谢柏松

理论物理学博士,北京师范大学研究员,博士生导师
目前就职北京师范大学
所在学科物理学
永久地址http://lenp.bnu.edu.cn/szdw/zzry/jsyjy/19794.html
电话58804586(办);13671238078
邮箱bsxie@bnu.edu.cn

发表论文

此处只列出经过专业审稿人评审后发表的国内外SCI论文,其他中文论文和30多篇国内外的会议报告等没有列出

List of Publications of Dr. Baisong Xie

2021

[160] A. Turson, M. Ali Bake, B. S.Xie, Y. Niyazi and A. Abudurexiti, Chin Phys. B 30, 115202 (2021).
Ultrabright γ-ray emission from the interaction of an intense laser pulse with a near-critical-density plasma
[159] L. J. Li, M. Mohamedsedik and B. S. Xie, Phys. Rev. D 104, 036015 (2021).
Enhanced dynamically assisted pair production in spatial inhomogeneous electric fields with the frequency chirping
[158] M. Mohamedsedik, L. J. Li and B. S. Xie, Phys. Rev. D 104, 016009 (2021).
Schwinger pair production in inhomogeneous electric fields with symmetrical frequency chirp
[157] K. Wang, X. H. Hu, S. Dulat and B. S. Xie, Chin. Phys. B 30, 060204 (2021).
Effect of symmetrical frequency chirp on pair production
[156] A. Sawut, S. Dulat and B. S. Xie , Physica Scripta 96, 055305 (2021).
Pair production in asymmetric Sauter potential well
[155] N. Yasen, B. Xie and W. Liu, Plasma Sci. And Tech. 23, 015003 (2021).
Dense positrons and γ-rays generation by lasers interacting with convex target

2020

[154] O. Olugh, Z. L. Li and B. S. Xie, High Power Laser Sci. and Engineering8, e38(2020).
Asymmetric pulse effects on pair production in polarized electric fields
[153] M. Ababekri, S. Dulat, B. S. Xie and J. Zhang, Phys. Lett. B 810, 135815 (2020).
Chirp effects on pair production in oscillating electric fields with spatial inhomogeneity
[152] Mamat Ali Bake, Aynisa Tursun, Aimierding Aimidula and Baisong Xie, Plasma Sci. And Tech. 22, 105201 (2020).
Two-stage γ ray emission via ultrahigh intensity laser pulse interaction with a laser wakefield accelerated electron beam
[151] Obulkasim Olugh, Zi-Liang Li and Bai-Song Xie, Phys. Lett. B 802, 135259 (2020).
Dynamically assisted pair production for various polarizations
[150] C. Gong, Z. L. Li, B. S. Xie and Y. J. Li, Phys. Rev. D 101, 016008 (2020).
Electron-positron pair production in frequency modulated laser fields

2019

[149] Y. L. Wang, H. B. Sang and B. S. Xie, Phys. Rev. D 100, 116016 (2019).
Schwinger pair production correction in thermal systems
[148] Z. L. Li, B. S. Xie and Y. J. Li, Phys. Rev. D 100, 076018 (2019).
Boson pair production in arbitrarily polarized electric fields
[147] Chong Lv, Bao-Zhen Zhao, Feng Wan, Hong-Bo Cai, Xiang-Hao Meng, Bai-Song Xie, Fu-Long Liu, Qiu-Shi Liu, Xiao-Hua Zhang, Ji Zhang and Yu-Chen Li, Phys. Plasmas 26, 103101 (2019).
Effect of the electron heating transition on the proton acceleration in a strongly magnetized plasma
[146] Jianfeng Lv, Yiqing Hu and Baisong Xie, Europhys. Lett 127, 54001 (2019).
Analytical Thomson backscattering spectra and new scaling laws in laser and magnetic fields
[145] Li Wang, Binbing Wu and B. S. Xie, Phys. Rev. A 100, 022127 (2019).
Electron-positron pair production in an oscillating Sauter potential
[144] Mamutjan Ababekri, Bai-Song Xie and Jun Zhang, Phys. Rev. D 100, 016003 (2019).
Effects of finite spatial extent on Schwinger pair production
[143] Y. J. Hou, B. S. Xie, C. Lv, F. Wan, L. Wang, N. Yasen, H. B. Sang, and G. X. Xia, Plasma Sci. And Tech. 21, 085201 (2019).
High density γ-ray emission and dense positron production via multi-lasers driven circular target
[142] Li Zhao, Zhijing Chen, Haibo Sang and Baisong Xie, Chin. Phys. Lett. 36, 074101 (2019).
Spatial Characteristics of Thomson scattering spectra in laser and magnetic fields
[141] J. Zhu and B. S. Xie, Europhys. Lett, 126,34001 (2019).
Nonlinear enhanced effects on Thomson backscattering by magnetic field and amplitude modulating of laser field
[140] Zhijing Chen, Li Zhao, Chun Jiang, Haibo Sang and Baisong Xie, Europhys. Lett,125,64002 (2019).
Thomson backscattering in combined two laser and magnetic field
[139] N. Yasen, C. Lv, Y. J. Hou, L. Wang, H. B. Sang, M. Ali Bake, and B. S. Xie, Plasma Sci. And Tech. 21, 045201 (2019).
Enhancement of proton collimation and acceleration by an ultraintense laser interacting with a cone target followed with a beam collimator
[138] Obulkasim Olugh, Zi-Liang Li, Bai-Song Xie, and Reinhard Alkofer, Phys. Rev. D 99, 036003 (2019).
Pair production in differently polarized electric fields with frequency chirps
[137] Z. L. Li, B. S. Xie and Y. J. Li, J. Phys. B: At. Mol. Opt. Phys. 52, 025601 (2019).
Vortices in multiphoton pair production by two-color rotating laser fields

2018

[136] Jian Huang, Chun Jiang, Bai-Song Xie, Hai-Bo Sang, Li Zhao, Zhi-Jing Chen, Chong Lv,Feng Wan and Wei Cheng, EPL, 124,34005 (2018).
Effects of laser pulse shape on forward Thomson scattering
[135] N. Yasen, C. Lv, Y. J. Hou, L. Wang, F. Wan, M. R. Jia, I. Sitiwaldi, H. B. Sang, M. Ali Bake,  and B. S. Xie, Plasma Sci. And Tech. 20, 125201 (2018).
Fast electrons collimating and focusing by an ultraintense laser interacting with high density layers
[134] M. R. Jia, F. Wan, C. Lv and B. S. Xie, Commun. Theor. Phys. 70 (4), 430-438 (2018).
Pair production in chromoelectric field with back reaction
[133] D. D. Cao, F. Wan, Y. J. Hou, H. B. Sang and B. S. Xie, Chin. Phys. B 27, 065201 (2018).
Reversed rotation of limit cycle oscillation and dynamics of low-intermediate-high confinement transition
[132] Weijun Zhou, Xueren Hong, Baisong Xie, Yang Yang, Li Wang, Jianmin Tian, Rongan Tang, and Wenshan Duan, Phys. Rev. ST Accel. Beams 21, 021301 (2018).
High quality ion acceleration through the interaction of two matched counterpropagating transversely polarized Gaussian lasers with a flat foil target
[131] I. Sitiwaldi and B. S. Xie, Phys. Lett. B 777, 406-411 (2018).
Pair production by three fields dynamically assisted Schwinger process

2017

[130] Y. J. Hou, C. Lv, F. Wang, N. Yasen, M. Ali Bake, H. B. Sang and B. S. Xie, Phys. Plasmas 24, 123110 (2017).
Transverse magnetic field effect on the transport of relativistic electrons beam in laser irradiating plasmas
[129] B. S. Xie, Z. L. Li, S. Tang and J. Liu, Physics 46 (11) 713-720 (2017). (in Chinese).
Electron-positron pair production in ultrastrong fields
[128] H. Z. Xie, C. Jiang and B. S. Xie, Chin. Phys. B 26, 124101 (2017).
Studies on convergence and scaling law of Thomson backscattering spectra in strong fields
[127] Z. L. Li, Y. J. Li and B. S. Xie, Phys. Rev. D 96, 076010 (2017).
Momentum vortices on pairs production by two counter-rotating fields
[126] B. S. Xie, Z. L. Li and S. Tang, Matter and Radiation at Extremes 2, 225-242 (2017).
Electron-positron pair production in ultrastrong laser fields
[125] F. Wan, C. Lv, M. R. Jia, H. B. Sang and B. S. Xie, Eur. Phys. J. D 71, 236 (2017).
Photon emission by bremmstrahlung and nonlinear Compton scattering in the interaction ofultraintense laser with plasmas
[124] C. Lv, F. Wan, Y. J. Hou, X. R. Hong, M. R. Jia, H. B. Sang and B. S. Xie, Phys. Plasmas 24, 083114 (2017).
Accelerating and guiding of $C^{6+}$ by an intense laser irradiating on a foil target with a tapered channel
[123] X. R. Hong, W. J. Zhou, B. S. Xie, Y. Yang, L. Wang, J. M. Tian, R. A. Tang and W. S.Duan, Chin. Phys. B 26 (6), 065203 (2017).
Generation of high quality ion beams through the stable radiation pressure acceleration of thenear critical density target
[122] F. Wan, C. Lv, M. R. Jia and B. S. Xie, Plasma Sci. And Tech. 19, 075201 (2017).
Enhanced photon emission and pair production in laser irradiating plasmas
[121] C. Jiang, H. Z. Xie, H. B. Sang and B. S. Xie, Europhys. Lett. 117, 44002(2017).
Thomson backscattering in combined fields with a general elliptical polarization
[120] C. Lv, B. S. Xie, F. Wan, Y. J. Hou, M. R. Jia, H. B. Sang, X. R. Hong and S. B. Liu,
Phys. Plasmas 24, 033122 (2017).
Enhanced laser radiation pressure acceleration of protons with a gold cone-capillary
[119] I. Sitiwaldi and B. S. Xie, Phys. Lett. B768, 174-179 (2017).
Modulation effect in multiphoton pair production
[118] D. Lu, Z. L. Li, H. B. Sang and B. S. Xie, Plasma Sci. And Tech. 19(3), 035002 (5pp) (2017).
Delicate scale multipeak and flat-top structures of solitary waves in multi-component plasmas
[117] Sitiwaldi Ibrahim, Z. L. Li and B. S. Xie, Commun. Theor. Phys. 67 (1), 76-82 (2017).
Electron-positron pair production in strong fields characterized by conversion energy
[116] N. Abdukerim, Z. L. Li and B. S. Xie, Chin. Phys. B 26 (2), 020301 (8pp) (2017).
Enhanced electron-positron pair production by frequency chirping in one- and two-color
laser pulse fields
[115] C. Lv, F. Wan, Y. J. Hou, M. R. Jia, H. B. Sang, B. S. Xie, and S. B. Liu, Plasma Phys.
Control. Fusion 59, 025006 (10pp)(2017).
Guiding and collimating the fast electrons by using a low-density-core target with buried
high density layers
[114] M. R. Jia, Z. L. Li, C. Lv, F. Wan and B. S. Xie, Front. Phys. 12, 121101 (2017).
pair production in strong SU(2) background fields

2016

[113] Z. L. Li, N. Abdukerimand B. S. Xie, Progress in Physics 36, 129-156 (2016)(in Chinese).
The research and progress of vacuum electron-positron pair production in ultra-intense fieldsstudied by kinetic method
[112] Y. J. Fu, C. Jiang, C. Lv, F. Wan, H. B. Sang, and B. S. Xie, Phys. Rev. A 94, 052102(2016).
Scale invariance and scaling law of Thomson backscatter spectra by electron moving in resonance regime in combined laser and magnetic fields
[111] C. Lv, F. Wan, M. R. Jia, Z. L. Li, H. B. Sang and B. S. Xie, Chin. Phys. B 25, 105201 (2016).
Electronic trasport of Lorentz plasma with collision and magnetic field effects
[110] Y. J. Hou, F. Wan, H. B. Sang and B. S. Xie, Phys. Plasmas 23, 013105 (2016).
Positron acceleration in plasma bubble wakefield driven by an ultraintense laser

2015

[109] Z. L. Li, D. Lu and B. S. Xie, Phys. Rev. D 92, 085001 (2015).
Effects of electric field polarizations on pair production
[108] D. Lu, Z. L. Li and B. S. Xie, J. Plasma Phys. 81, 905810508 (2015).
Solitary waves in asymmetric electron-positron-ion plasmas
[107] Y. Liang, H. B. Sang, F. Wan, C. Lv and B. S. Xie, Phys. Plasmas 22, 073105 (2015).
Relativistic laser pulse compression in magnetized plasmas
[106] Z. L. Li, D. Lu,B. S. Xie, B. F. Shen, L. B. Fu and J. Liu, Europhys. Lett. 110, 51001 (2015).
Nonperturbative signatures in pair production forgeneral elliptic polarization fields
[105] H. Y. Wang, P. Sun, W. Jiang, J. Zhou and B. S. Xie, Chin. Phys. B 24, 065207 (2015).
Implicit electrostatic particle-in-cell/Monte Carlo simulation for the magnetized plasma: Algorithms and application in gas-inductive breakdown
[104] N. Abdukerim, Z. L. Li and B. S. Xie, Front. Phys. 10, 101202 (2015).
Electron-positron pair production in the low-density approximation
[103] Z. L. Li, D. Lu, and B. S. Xie, Front. Phys. 10, 101201 (2015).
Dynamically assisted pair production for scalar QEDby two fields

2014

[102] Z. L. Li, D. Lu, B. S. Xie, L. B. Fu, J. Liu, and B. F. Shen, Phys. Rev. D 89, 093011 (2014).
Enhanced pair production in strong fields by multiple-slit interference effect with dynamically assisted Schwinger mechanism
[101] Z. L. Li, D. Lu, and B. S. Xie, Phys. Rev. D 89, 067701 (2014).
Multiple-slit interference effect in the time domain for boson pair production
[100] A. Aimidula, M. A. Bake, F. Wan, B. S. Xie, C. P. Welsch, G. Xia, O. Mete, M. Uesaka, Y. Matsumura, M. Yoshida, and K. Koyama, Phys. Plasmas 21, 023110 (2014).
Numerically optimized structures for dielectric dual-grating laser accelerators
[99] S Tang,M. Ali Bake, H. Y. Wang, and B. S. Xie, Phys. Rev. A 89, 022105 (2014).
QED Cascades Induced By High Energy $\gamma$ Photon In Strong Laser Field
[98] D. Lu, Z. L. Li, N. Abdukerim, and B. S. Xie, Phys. Plasmas 21, 022108 (2014).
Solitary and shock waves in magnetized electron-positron plasma
[97] O. Oluk, B. S. Xie, M. AliBake, and S. Dulat, Front. Phys. 9,157 (2014).
Electron-positron pair production in a strong asymmetric laser electric field
[96] S. Tang, B. S. Xie, H. Y. Wang, J. Liu, L. B. Fu, and M. Y. Yu, Chin. Phys. Lett. 31, 011203 (2014).
Enhanced correlation of electron-positron pair in two and three dimensions

2013

[95] B. S. Xie, Z. L. Li, D. Lu, and H. B. Sang, Phys. Plasmas 20, 112109 ( 2013).
On existence of solitary waves in unmagnetized neutral hot pair plasma
[94] N. Abdukerim, Z. L. Li, and B. S. Xie, Phys. Lett. B 726, 820 (2013).
Effects of laser pulse shape and carrier envelope phase on pair production
[93] H. Liu, X. P. Li, B. S. Xie, and S. Zhang, Phys. Lett. A 377, 2890 (2013).
Intense laser beam propagating in a plasma channel with flat-bottom leaky density profile
[92] D. Lu, Z. L. Li, and B. S. Xie, Phys. Rev. E 88, 033109 (2013).
Effects of ion mobility and positron fraction on solitary waves in weak relativistic electron-positron-ion plasma
[91] M. Ali Bake, B. S. Xie, A. Aimidula, and H. Y. Wang, Phys. Plasmas 20, 074503 (2013).
Efficient proton acceleration and focusing by an ultraintense laser interacting with a parabolic double concave target with an extended rear
[90] S. Tang, B. S. Xie, D. Lu, H. Y. Wang, L. B. Fu, and J. Liu, Phys. Rev. A 88, 012106 (2013).
Electron-positron pair creation and correlation between momentum and energy level in a symmetric potential well
[89] D. Lu, X. Y. Zhao, B. S. Xie, M. Ali Bake, H. B. Sang, and H. C. Wu, Phys. Plasmas 20, 063104 (2013).
Electrons trajectories around a bubble regime in intense laser plasma interaction
[88] M. Ali Bake, B. S. Xie,S. Zhang, and H. Y. Wang, Phys. Plasmas 20, 033112 (2013).
Energetic protons from an ultraintense laser interacting with a symmetricparabolic concave target
[87] H. B. Sang, M. Jiang, and B. S. Xie, Chin. Phys. Lett. 30, 111201 (2013).
Electron-positron pair creation from vacuum by the negative frequency chirping laser pulses
[86] M. JIang, B. S. Xie, H. B. Sang, and Z. L. Li, Chin. Phys. B 22, 100307 (2013).
Enhanced electron-positron pair creation by the frequency chirped laser pulse
[85] Z. L. Li, H. B. Sang, and B. S. Xie,Chin. Phys. Lett. 30, 071201 (2013).
Enhanced electron-positron pair production of vacuum in a strong laser pulse field by frequency variation
[84] H. C. Wu and B. S. Xie,Commun.Theor.Phys. 59, 484 (2013).
Modified Bubble Core Fields and Bubble Shape in Laser Driven Plasma
[83] N.Abdukerim, B. S. Xie, Z. L. Li, and S. Dulat, Commun. Theor. Phys. 59, 331 (2013).
Electron-Positron Pair Production in a Strong Laser Field Enhanced by an Assisted High Frequency Weak Field
[82] H. B. Sang, S. Q. Deng, and B. S. Xie,Commun. Theor. Phys. 59, 205 (2013).
Effects of Ions Charge-Mass Ratio on Energy and Energy Spread of Accelerated Ions in Laser Driven Plasma

2012

[81] A. Nuriman, B. S. Xie, Z. L. Li and D. Sayipjamal, Phys. Lett. B 717, 465 (2012).
Enhanced electron–positron pair creation by dynamically assisted combinational fields
[80] M. Ali Bake, S. Zhang S, B. S. Xie, X. R. Hong, and H. Y. Wang, Phys. Plasmas 19, 083103 (2012).
Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density
[79] X. Y. Zhao, B. S. Xie, H. C. Wu, S. Zhang, X. R. Hong, and A. Aimierding, Phys. Plasmas 19, 033108 (2012).
Electron injection and acceleration in the plasma bubble regime driven by an ultraintense laser pulse combined with using dense-plasma wall and block
[78] L. Y. He, B. S. Xie, X. H. Guo, and H. Y. Wang, Commun. Theor. Phys. 58, 863 (2012).
Electron-Positron Pair Production in an Arbitrary Polarized Ultrastrong Laser Field
[77] M. Mohamedsedik, B. S. Xie and S Dulat, Commun. Theor. Phys. 57, 422(2012).
Analytical Study of Pair Production Rate from Vacuum in an Elliptic Polarized Field by a Two-Level Transition Technique
[76] B. S. Xie, M. Mohamedsedik, and S. Dulat, Chin. Phys. Lett. 29, 021102 (2012).
Electron-Positron Pair Production in an Elliptic Polarized Time Varying Field

2011

[75] X. R. Hong, B. S. Xie, S. Zhang, H. C. Wuand X. Y. Zhao,Phys. Plasmas 18, 103106 (2011).
Wakefield effects and solitary waves of an intense short laser pulse propagation in a plasma channel
[74] S. Zhang, X. R. Hong, H. Y. Wang, and B. S. Xie, Phys. Lett. A 375, 4022 (2011).
Allowable propagation of short pulse laser beam in a plasma channel andelectromagnetic solitary waves
[73] S. Zhang, B. S. Xie, X. R. Hong, H. C. Wuand X. Y. Zhao, Phys. Plasmas 18, 033104 (2011).
Electromagnetic solitary waves in plasma channel
[72] M. Ali Bake, B. S. Xie, S. Dulat, and A. Aimidula, Commun. Theor. Phys. 55, 883 (2011).
Electron acceleration in wakefield and supra-bubble regimes by ultraintense laser with asymmetric pulse
[71] S. Zhang, B. S. Xie, X. R. Hong, H. C. Wu, A. Aimidula, X. Y. Zhao, and M. P. Liu,Chin.Phys. B 20, 015206 (2011).
Suppression of multiple ion bunches and generation of monoenergetic ion beams in laser foil-plasma interaction

2010

[70] H. C. Wu, B. S. Xie, S. Zhang, X. R. Hong, X. Y. Zhao and M. P. Liu, Phys. Plasmas 17, 113103 (2010).
Bubble core field modification by residual electrons inside the bubble
[69] X. R. Hong, B. S. Xie, S. Zhang, H. C. Wu, A. Aimidula,X. Y. Zhao, and M. P. Liu, Phys. Plasmas 17, 103107 (2010).
High quality ion acceleration from a double-layer target dominated by the radiation pressure of a transversely Gaussian laser pulse
[68] B. Liu, H. Zhang, L. B. Fu, Y. Q. Gu, B. H. Zhang, M. P. Liu, B. S. Xie, J. Liu, and X. T. He, Laser and Part. Beams 28, 351 (2010).
Ion jet generation in the ultraintense laser interactions with rear-side concave target
[67] HC Wu, BS Xie, and MY Yu,Chin. Phys. Lett. 27, 105201 (2010).
Electron acceleration in the bubble regime with dense-plasma wall driven by an ultraintense laser pulse
[66] M. P. Liu, Q. N. Wang, S. . Deng, S. Q. Liu, and B. S. Xie, Commun. Theor. Phys. 54, 359 (2010).
Electron acceleration and bunch generation by intense femtosecond laser pulse in preplasma of a target

2009

[65] J. Li, B. S. Xie, H. B. Sang, X. R. Hong, S. Zhang, and M. Y. Yu, Appl. Phys. Lett. 95, 161105 (2009).
Nonlinear laser-driven electron resonance acceleration in inhomogeneous magnetic field
[64] M. P. Liu,H. C. Wu, B. S. Xie, X. R. Hong, S. Zhang, and M. Y. Yu, Phys. Plasmas 16, 083104 (2009).
Electron acceleration by intense short laser pulse in the preplasma of a target
[63] H. C. Wu, B. S. Xie, , X. R. Hong, S. Zhang, and M. Y. Yu, Phys. Plasmas 16, 073108 (2009).
Electron trajectories and betatron oscillation in the wake bubble in laser-plasma interaction
[62] M. P. Liu, B. S. Xie, Y. S. Huan, J. Liu, and M. Y. Yu, Laser and Part. Beams 27, 327 (2009).
Enhanced ion acceleration by collisionless electrostatic shock in thin foils irradiated by ultraintense laser pulse
[61] A. Aimidula, B. S. Xie, S. Dulat, and A. Zakir, Physica Scripta 79, 045503 (2009).
Positron acceleration in the wakefield of asymmetric laser pulses
[60] B. S. Xie, A. Aimidula,J. S. Niu, J. Liu, and M. Y. Yu, Laser and Part. Beams 27, 27 (2009).
Electron acceleration in the wakefield of asymmetric laser pulses
[59] B. S. Xie and H. C. Wu, Commun. Theor. Phys. 51, 1125 (2009).
Ion acceleration in laser-plasma interaction: shock, sheath and scaling

2008

[58] M. P. Liu, H. C. Wu, B. S. Xie, J. Liu, H. Y. Wang, and M. Y. Yu, Phys. Plasmas 15, 063104 (2008).
Energetic collimated ion bunch generation from an ultraintense laser interacting with thin concave targets
[57] M. P. Liu, H. C. Wu, B. S. Xie, and M. Y. Yu, Phys. Plasmas 15, 023108 (2008).
Electron acceleration in vacuum by subcycle laser pulse
[56] B. S. Xie and X. T. Yin, Commun. Theor. Phys. 49, 753 (2008).
Stable propagating wave and wake fields in relativistic electromagnetic plasma

2007

[55] B. S. Xie , M. P. Liu, N. Y. Wang, and M. Y. Yu, Appl. Phys. Lett. 91, 011118 (2007).
Particle acceleration by subcycle laser pulse in vacuum
[54] B. S. Xie, H. C. Wu, H. Y. Wang, N. Y. Wang and M. Y. Yu, Phys. Plasmas 14, 073103 (2007).
Analysis of the electromagnetic fields and electron acceleration in the bubble regime of the laser-plasma interaction
[53] S. W. Yan, Q. Wang,B. S. Xie, and F. S. Zhang Chin. Phys. Lett. 24, 1771 (2007).
Oscillatory activities in regulatory biological networks and Hopf bifurcation
[52] B. S. Xie and S. C. Du, Front. Phys. 2, 178 (2007).
Solitons in relativistic laser-plasma interactions

2006

[51] B. S. Xie and S. C. Du, Physica Scripta 74, 638 (2006).
Spectrum of electromagnetic solitons in relativistic plasma
[50] B. S. Xie and S. C. Du, Phys. Plasmas 13, 074504 (2006).
Multipeak solitons and nonlinear modulation solutions in plasma under relativistic electromagnetic field
[49] B. S. Xie, X. T. Yin, and X. Luo, Physica Scripta 73, 655 (2006).
New approaches and solutions of the nonlinear force-free field
[48] B. S. Xie and S. C. Du,Commun. Theor. Phys. 46,739 (2006).
Numerical soliton and oscillating wave solutions for the Flierl-Petviashvili equation in plasmas
[47] B. S. Xie, Commun. Theor. Phys. 46,735 (2006).
New approaches and solutions of the nonlinear force-free magnetic field
[46] H. Y. Wang and B. S. Xie, Commun. Theor. Phys. 46,563 (2006).
Numerical simulation of ultrafast laser pulse propagation in tenuous plasmas: envelope evolving and modulation
[45] B. S. Xie, Commun. Theor. Phys. 46,561 (2006).
Two new solutions of non-constant-α force-free magnetic field
[44] B. S. Xie, H. C. Wu, S. W. Yan, F. S. Zhang and D. Sayipjamal,Commun. Theor. Phys. 46, 353 (2006).
Correlation of two coupled particles in viscoelastic medium

2005

[43] C. C. Hua, B. S. Xie, and K. F. He, Chaos, Solitons and Fractals25, 1161 (2005).
Steady Bifurcation and Solitons in Relativistic Laser Plasmas Interaction
[42] B. R. Wei, F. S. Zhang, W. Cheng, S. W. Yan, and B. S. Xie, Int. Jour. Mod. Phys. B19, 2886 (2005).
Ionization of Na-2 by highly charged particles
[41] H. C. Wu and B. S. Xie, Phys. Plasmas 12, 064503 (2005).
Effect of thermic emission current on charge of rains in plasma
[40] B. S. Xie andM. Y. Yu, Physica Scripta 71, 548 (2005).
Effect of ion trapping on the shielding of a charged grain
[39] B. S. Xie, H. Li, and B. Hu, Europhys. Lett. 69, 358 (2005).
Heat conduction in one-dimensional Yukawa chain
[38] H. C. Wu andB. S. Xie, Commun. Theor. Phys. 44, 547 (2005).
Charges and levitation of grains in plasma sheath with dust thermic emission
[37] B. S. Xie and M. Y. Yu, Commun. Theor. Phys. 44, 297 (2005).
Drift intermittent synchronization and controllability in a simple model
[36] B. S. Xie and C. C. Hua, Commun. Theor. Phys. 43, 1119 (2005).
Solitary waves in relativistic electromagnetic plasma
[35] B. S. Xie and R. Wang, Commun. Theor. Phys. 43, 915 (2005).
Screening of a test charge in a plasma

2004

[34] B. S. Xie and Y. P. Chen, Phys. Plasmas 11, 3519 (2004).
Low frequency modes in strongly coupled magnetized dusty plasmas

2003

[33] B. S. Xie, Chin. Phys. Lett. 20, 2203 (2003).
Instability of longitudinal wave in magnetized strongly coupled dusty plasma
[32] S. B. Liu, B. S. Xie, S. P. Zhu, C. Y. Zheng, J. Zhang, and T. C Zuo, Commun. Theor. Phys. 39, 737(2003).
Stimulated emission of gamma photon from ultrashort pulse intense laser-solid-target interaction

2002

[31] B. S. Xie and Z. A. Yang, Phys. Plasmas 9, 4851 (2002).
Noise driven configuration of dust clusters by molecular dynamics simulation
[30] R. Wang and B. S. Xie, Nucl. Instrum Meth. B 198, 197 (2002).
Study of diffusion of Ag in Cu single crystals
[29] B. S. Xie, Z. Y. Chen ZY, and M. Y. Yu, IEEE Trans. Plasma Sci. 30, 1384 (2002).
Effect of dust-charge variation on ion-wave decay interaction in dusty plasma
[28] B. S. Xie and N. C. Wang, Physica Scripta 65, 444 (2002).
Optimum effect of asymmetric laser pulse shape on relativistic laser-plasma wake field
[27] B. S. Xie, M. Y. Yu, K. F. He, Z. Y. Chen, and S. B. Liu,Phys. Rev. E 65, 027401 (2002).
Modulational instability of short-wavelength ion waves in strongly coupled dusty plasmas
[26] N. C. Wang and B. S. Xie, Phys. Plasmas 9, 717 (2002).
Nonlinear instabilities in plasma with highly correlated dust grains
[25] H. J. Lian, B. S. Xie, and H. Y. Zhou,Chin. Phys. Lett. 19, 1635 (2002).
Levitation and oscillation of dust grains in plasma sheath with wake potential
[24] B. S. Xie, Chin. Phys. Lett. 19, 1463 (2002).
Longitudinal waves in strongly coupled magnetized dusty plasma with dust charging relaxation
[23] B. S. Xie and A. D. Liu, Chin. Phys. Lett. 19, 698 (2002).
Effect of laser pulse shape on the wake field in relativistic intense laser-plasma interaction
[22] B. S.Xie, Chin. Phys. Lett. 19, 365 (2002).
Does the decay wave propagate forwards in dusty plasmas?

2001

[21] B. S. Xie and M. Y. Yu, Physica Scripta T89, 138 (2001).
Dust acoustic waves in collisional plasmas with highly correlated dusts
[20] B. S. Xie, Z. Y. Chen, and M. Y. Yu,IEEE Trans. Plasma Sci.29, 226 (2001).
Low-frequency electrostatic instabilities in strongly coupled dusty plasmas
[19] B. S. Xie, K. F. Liu, and K. F. He, Chin. Phys. Lett. 18, 927 (2001).
Suppression of instability in strongly coupled dusty plasmas with ion flow
[18] B. S. Xie and K. F. He, Chin. Phys. 10, 214 (2001).
Nonlinear localized structure in dusty plasma

2000

[17] B. S. Xie and M. Y. Yu, Phys. Rev. E 62, 8501 (2000).
Dust acoustic waves in strongly coupled dissipative plasmas
[16] B. S. Xie and M. Y. Yu, Physica Scripta 62, 413 (2000).
Low frequency longitudinal modes in strongly coupled collisional dusty plasmas
[15] B. S. Xie and M. Y. Yu, Phys. Plasmas 7, 3137 (2000).
Dust-acoustic waves in strongly coupled plasmas with variable dust charge
[14] B. S. Xie, K. F. He, and M. Y. Yu, Chin. Phys. Lett. 17, 890 (2000).
Dust-acoustic waves in strongly coupled dusty plasmas containing variable-charge impurities
[13] B. S. Xie, K. F. He, and Y. P. Chen, Chin. Phys. 9, 922 (2000).
Dust-acoustic shock waves in the sheath of dusty plasmas
[12] B. S. Xie, K. F. He, and Z. Q. Huang, Chin. Phys. Lett. 17, 815 (2000).
Dust-acoustic solitons in dusty plasma with two-temperature ions
[11] B. S. Xie, Chin.Phys. 9, 810 (2000).
Approximate model of intense field stabilization for hydrogen atom

1999

[10] B. S. Xie, K. F. He, and Z. Q. Huang, Phys. Plasmas 6, 3808-3816 (1999).
Dust-acoustic solitary waves and double layers in dusty plasma with variable dust charge and
two-temperature ions
[9] B. S. Xie, K. F. He, Z. Q. Huang, and M. Y. Yu, Phys. Plasmas 6, 2997 (1999).
Dust shielding and correlation function for dusty plasmas
[8] B. S. Xie, K. F. He, and Z. Q. Huang, Phys. Lett. A253, 83 (1999).
Attractive potential in weak ion flow coupling with dust-acoustic waves
[7] B. S. Xie and S. G. Chen, Commun. Theor. Phys. 32, 13 (1999).
Ionization problem for hydrogen atom in intense circularly polarized laser field revisited

1998

[6] B. S. Xie, K. F. He, and Z. Q. Huang, Phys. Lett. A247, 403-409 (1998).
Effect of adiabatic variation of dust charges on dust-acoustic solitary waves
[5] B. S. Xie, Phys. Lett. A 242, 79 (1998).
Classical intense-field stabilization analysis by a four-dimensional map approximation
[4] B. S. Xie, K. F. He, and Z. Q. Huang, Chin. Phys. Lett. 15, 892 (1998).
Modified dust-acoustic solitons by adiabatic variation of dust charges
[3] B. S. Xie, S. G. Chen, andJ. Liu,Commun. Theor. Phys. 30, 481 (1998).
Classical description of intense field stabilization dynamics of 1D model atom
[2] B. S. Xie and S. G. Chen, Acta Physica Sinica7, 670 (1998).
Determination of Floquet states and quasi-energy by correlation function

1997

[1] B. S. Xie and S. G. Chen, Chin. Phys. Lett. 14, 652 (1997).
Floquet eigenstate, phase space distribution and entropy in the atomic stabilization dynamics
Adress
北京市新街口外大街19号
北京师范大学核科学与技术学院 100875
Telephone
58804586(办)
13671238078
Email
bsxie@bnu.edu.cn

© Copyright © 2019.xiebaisong All rights reserved